Midterm Review

YORK EECS 2011 L .
U NIwERSITE ' Prof. J. Elder 1 Last Updated: February 15, 2018

IIIIIIIIII

Topics on the Midterm

» Data Structures & Object-Oriented Design
» Run-Time Analysis

» Linear Data Structures

» The Java Collections Framework

» Recursion

> Trees

» Priority Queues & Heaps

YORK EECS 2011 > .
.......... ' Prof. J. Elder 2 Last Updated: February 15, 2018

UUUUUUUUUU

Data Structures So Far

» Array List
O (Extendable) Array

» Node List
O Singly or Doubly Linked List

»> Stack

O Array

O Singly Linked List
» Queue

O Array
O Singly or Doubly Linked List

EECS 2011
Prof. J. Elder

> Priority Queue

O Unsorted doubly-linked list
O Sorted doubly-linked list
O Heap (array-based)

> Adaptable Priority Queue
O Sorted doubly-linked list with location-

aware entries

O Heap with location-aware entries

> Tree

O Linked Structure

» Binary Tree

O Linked Structure

O Array

Last Updated: February 15, 2018

Topics on the Midterm

» Data Structures & Object-Oriented Design
» Run-Time Analysis

» Linear Data Structures

» The Java Collections Framework

» Recursion

> Trees

» Priority Queues & Heaps

YORK EECS 2011 L .
.......... ' Prof. J. Elder 4 Last Updated: February 15, 2018

IIIIIIIIII

Data Structures & Object-Oriented Design

» Definitions

» Principles of Object-Oriented Design
» Hierarchical Design in Java

» Abstract Data Types & Interfaces

» Casting

» Generics

» Pseudo-Code

YORK EECS 2011 . .
.......... ' Prof. J. Elder 5 Last Updated: February 15, 2018

IIIIIIIIII

Topics on the Midterm

» Data Structures & Object-Oriented Design
» Run-Time Analysis

» Linear Data Structures

» The Java Collections Framework

» Recursion

> Trees

» Priority Queues & Heaps

YORK EECS 2011 A .
.......... ' Prof. J. Elder 6 Last Updated: February 15, 2018

IIIIIIIIII

Seven Important Functions

» Seven functions that often

appear in algorithm analysis: - . | ‘
pp g y * 1E+28 Cubic
- 1E+26 —
4 Constant = 1 IFioa 1| —Quadratic
[Logarithmic = log n IER22 911 |inear
1E+20 1 /
U Linear=n 1E+18
'S 1E+16
d N-LOQ-N =n |Og n : 1E+14
: 1E+12
~ p2
O Quadratic=n g
0 Cubic = n3 1E+8
1E+6
O Exponential = 2~ 1E+4
1E+2
1E+0 i
> In alog-log chart, the slope of IE+0 1E+2 1E+4 1E+6 1E+8 1E+10
the line corresponds to the L
growth rate of the function.
UYNQBSIIT(E ' EECS 2011 -7 - Last Updated: February 15, 2018

Prof. J. Elder

IIIIIIIIII

Definition of “Big Oh”

cg(n)
f(n)

/ g(n)

n

de.n, >0:Vn>n,,f(n)<cg(n)

f(n)e O(g(n))

YORK EECS 2011 o _
.......... ' Prof. J. Elder Last Updated: February 15, 2018

IIIIIIIIII

(e¢]

Relatives of Big-Oh

big-Omega
s f(n) is Q(g(n)) if there is a constantc > 0
and an integer constant n, 2 1 such that
f(n) =2 ceg(n) for n =2 n,

big-Theta

s f(n) is ©(g(n)) if there are constants c, > 0
and ¢, > 0 and an integer constant ny = 1
such that c,+g(n) < f(n) < c,*g(n) for n 2 n,

YORK ' EECS 2011

.......... Prof. J. Elder -9- Last Updated: February 15, 2018

VVVVVVVVVV

Time Complexity of an Algorithm

The time complexity of an algorithm is
the largest time required on any input
of size n. (Worst case analysis.)

» O(n?): For any input size n 2 n,, the algorithm takes
no more than cn? time on every input.

» Q(n?): For any input size n =2 n,, the algorithm takes at
least cn? time on at least one input.

> 0 (n?): Do both.

YORK EECS 2011]] .
.......... ' Prof. J. Elder 10 Last Updated: February 15, 2018

IIIIIIIIII

Time Complexity of a Problem

The time complexity of a problem is
the time complexity of the fastest
algorithm that solves the problem.

» O(n?): Provide an algorithm that solves the problem in no more than
this time.

0 Remember: for every input, i.e. worst case analysis!
> Q(n?): Prove that no algorithm can solve it faster.
L Remember: only need one input that takes at least this long!

» 0 (n?): Do both.

YORK EECS 2011 o .
.......... ' Prof. J. Elder 11 Last Updated: February 15, 2018

UUUUUUUUUU

Topics on the Midterm

» Data Structures & Object-Oriented Design
» Run-Time Analysis

» Linear Data Structures

» The Java Collections Framework

» Recursion

> Trees

» Priority Queues & Heaps

YORK EECS 2011]] .
.......... ' Prof. J. Elder 12 Last Updated: February 15, 2018

IIIIIIIIII

Linear Data Structures

» Fundamental Data Structures

 Arrays

O Singly-Linked Lists

 Doubly-Linked Lists
» Abstract Data Types

O Array Lists

O Stacks

[Queues

YORK ' EECS 2011 13-

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

Last Updated: February 15, 2018

Topics on the Midterm

» Data Structures & Object-Oriented Design
» Run-Time Analysis

» Linear Data Structures

» The Java Collections Framework

» Recursion

> Trees

» Priority Queues & Heaps

YORK EECS 2011]] .
.......... ' Prof. J. Elder 14 Last Updated: February 15, 2018

IIIIIIIIII

lterators

» An lterator is an object that enables you to traverse
through a collection and to remove elements from the
collection selectively, if desired.

» You get an lterator for a collection by calling its iterator
method.

» Suppose collection is an instance of a Collection.
Then to print out each element on a separate line:

lterator<E> it = collection.iterator();

while (it.hasNext())
System.out.printin(it.next());

YORK EECS 2011]] .
.......... ' Prof. J. Elder 15 Last Updated: February 15, 2018

IIIIIIIIII

http://java.sun.com/javase/7/docs/api/java/util/Iterator.html

The Java Collections Framework (Ordered Data Types)

J Interface lterable |
J Abstract Class | CoIIeTction I
W
Abstract List
‘M Collection

Abstract
Li_st

Abstract
Queue |

Priority Abstract
\MI Sequential | | Array ‘MI

List List T
/ | | Stackl
V
Linked
List
UYNQBS.IS ' EECS 2011 -16 - Last Updated: February 15, 2018

Prof. J. Elder

IIIIIIIIII

Topics on the Midterm

» Data Structures & Object-Oriented Design
» Run-Time Analysis

» Linear Data Structures

» The Java Collections Framework

»> Recursion

> Trees

» Priority Queues & Heaps

YORK EECS 2011]] .
.......... ' Prof. J. Elder 17 Last Updated: February 15, 2018

IIIIIIIIII

Linear Recursion Design Pattern

> Test for base cases

] Begin by testing for a set of base cases (there should be at least
one).

 Every possible chain of recursive calls must eventually reach a
base case, and the handling of each base case should not use
recursion.

> Recurse once

O Perform a single recursive call. (This recursive step may involve
a test that decides which of several possible recursive calls to
make, but it should ultimately choose to make just one of these
calls each time we perform this step.)

[Define each possible recursive call so that it makes progress
towards a base case.

YORK EECS 2011]] .
.......... ' Prof. J. Elder 18 Last Updated: February 15, 2018

UUUUUUUUUU

Binary Recursion

» Binary recursion occurs whenever there are
two recursive calls for each non-base case.

» Example 1: The Fibonacci Sequence

YORK EECS 2011]] .
.......... ' Prof. J. Elder 19 Last Updated: February 15, 2018

IIIIIIIIII

Topics on the Midterm

» Data Structures & Object-Oriented Design
» Run-Time Analysis

» Linear Data Structures

» The Java Collections Framework

» Recursion

> Trees

» Priority Queues & Heaps

YORK EECS 2011]] .
.......... ' Prof. J. Elder 20 Last Updated: February 15, 2018

UUUUUUUUUU

Tree Terminology

A\

Root: node without parent (A)

» Internal node: node with at least one child
(A, B,C,F)

» External node (a.k.a. leaf): node without
children (E, I, J, K, G, H, D)

» Ancestors of a node: parent,
grandparent, grand-grandparent, etc.

» Descendant of a node: child, grandchild,
grand-grandchild, etc.

» Siblings: two nodes having the same
parent

» Depth of a node: number of ancestors
(excluding self)

> Height of a tree: maximum depth of any
node (3)

- .][9] (k]
» Subtree: tree consisting of a node and its subtree
descendants
EECS 2011
UYNQBS,IS ' -21- Last Updated: February 15, 2018

Prof. J. Elder

IIIIIIIIII

Position ADT

» The Position ADT models the notion of place
within a data structure where a single object is
stored

> It gives a unified view of diverse ways of storing
data, such as

da cell of an array
da node of a linked list

(Ja node of a tree

» Just one method:

dobject element(): returns the element stored at the
position

YORK EECS 2011]] .
.......... ' Prof. J. Elder 22 Last Updated: February 15, 2018

VVVVVVVVVV

Tree ADT

» We use positions to abstract nodes

» Generic methods: » Query methods:
4 integer size() d boolean isIinternal(p)
4 boolean isEmpty() O boolean isExternal(p)
O Iterator iterator() U boolean isRoot(p)
O Iterable positions() » Update method:
» Accessor methods: 3 object replace(p, o)
O position root() U Additional update methods may

e be defined by data structures
U t t
position parent(p) implementing the Tree ADT

O positionlterator children(p)

YORK EECS 2011]] .
......... ‘ ' Prof. J. Elder 23 Last Updated: February 15, 2018

IIIIIIIIII

Preorder Traversal

> A traversal visits the nodes of a Algorithm preOrder(v)
tree in a systematic manner visit(v)
» In a preorder traversal, a node is for each child w of v
preOrder (w)

visited before its descendants

Make Money Fast!

2

1. Motivations

5 9

References

2. Methods

6 ! o)
2.1 Stock 2.2 Ponzi 2.3 Bank

3 4
1.1 Greed 1.2 Avidity

Fraud Scheme Robbery

EECS 2011
YORK ' - 24 - Last Updated: February 15, 2018

UUUUUUU 3
nnnnnnnn

Prof. J. Elder

Postorder Traversal

» |In a postorder traversal, a Algorithm postOrder(v)
node is visited after its for each child w of v
descendants postOrder (w)

visit(v)
9

o)
todo.txt

3

homeworks/

programs/ 1K

4 S 6
DDR.java Stocks.java Robot.java

1 2

h1c.doc h1nc.doc
3K 2K

10K 25K 20K

EECS 2011
Prof. J. Elder

-25 - Last Updated: February 15, 2018

Properties of Proper Binary Trees

» Notation » Properties:
n number of nodes de=i+1
e number of external nodes dn=2e-1
i number of internal nodes dh<i
h height dh< (n-1)2
de<2h
d h = log,e

dh=log,(n+1)-1

YORK EECS 2011 .
.......... ' Prof. J. Elder - 26 - Last Updated: February 15, 2018

IIIIIIIIII

Topics on the Midterm

» Data Structures & Object-Oriented Design
» Run-Time Analysis

» Linear Data Structures

» The Java Collections Framework

» Recursion

> Trees

» Priority Queues & Heaps

YORK EECS 2011]] .
.......... ' Prof. J. Elder 27 Last Updated: February 15, 2018

IIIIIIIIII

Priority Queue ADT

» A priority queue stores a collection of entries
» Each entry is a pair (key, value)
» Main methods of the Priority Queue ADT

O insert(k, x) inserts an entry with key k and value x

U removeMin() removes and returns the entry with smallest key
» Additional methods

O min() returns, but does not remove, an entry with smallest key
O size(), isEmpty()
» Applications:
U Process scheduling
O Standby flyers

YORK EECS 2011]] .
......... ‘ ' Prof. J. Elder 28 Last Updated: February 15, 2018

IIIIIIIIII

Comparator ADT

» A comparator encapsulates the action of comparing two
objects according to a given total order relation

» A generic priority queue uses an auxiliary comparator
» The comparator is external to the keys being compared

» When the priority queue needs to compare two keys, it
uses its comparator

» The primary method of the Comparator ADT:
O compare(a, b):
<> Returns an integer i such that
“i<0ifa<h
“i=0ifa=b
“i>0ifa>h

“ an error occurs if a and b cannot be compared.

YORK EECS 2011]] .
......... ‘ ' Prof. J. Elder 29 Last Updated: February 15, 2018

VVVVVVVVVV

Heaps

» Goal:
1 O(log n) insertion
4 O(log n) removal

» Remember that O(log n) is almost as good as O(1)!
de.g., n=1,000,000,000 - log n = 30

» There are min heaps and max heaps. We will assume
min heaps.

YORK EECS 2011]] .
.......... ' Prof. J. Elder 30 Last Updated: February 15, 2018

VVVVVVVVVV

Min Heaps

» A min heap is a binary tree storing keys at its nodes and
satisfying the following properties:

O Heap-order: for every internal node v other than the root
< key(v) 2 key(parent(v))

O (Almost) complete binary tree: let & be the height of the heap
<fori=0, ..., h—1,there are 2/ nodes of depth i
<-atdepth h -1

+» the internal nodes are to the left of the external nodes

% Only the rightmost internal node may have a single child

A
O The last node of a heap is the
rightmost node of depth /

YORK EECS 2011]] .
......... ‘ ' Prof. J. Elder 31 Last Updated: February 15, 2018

IIIIIIIIII

Upheap
> After the insertion of a new key k, the heap-order property may be

violated

» Algorithm upheap restores the heap-order property by swapping k&
along an upward path from the insertion node

» Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to &

» Since a heap has height O(log n), upheap runs in O(log n) time

e R

YORK EECS 2011]] .
.......... ' Prof. J. Elder 32 Last Updated: February 15, 2018

IIIIIIIIII

Downheap

> After replacing the root key with the key & of the last node, the
heap-order property may be violated

» Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

» Note that there are, in general, many possible downward paths —
which one do we choose?

? 2

.
0
.
‘e
.
‘e
‘e
.
0
11

YORK ' EECS 2011 _33.

“““““““““ Prof. J. Elder

IIIIIIIIII

Last Updated: February 15, 2018

Downheap

» We select the downward path through the minimum-key nodes.

» Downheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to &

» Since a heap has height O(log n), downheap runs in O(log n) time

YORK ' EECS 2011 34

“““““““““ Prof. J. Elder

IIIIIIIIII

Last Updated: February 15, 2018

Array-based Heap Implementation

» We can represent a heap with n keys
by means of an array of length n + 1

» Links between nodes are not explicitly
stored

» The cell at rank 0 is not used

\4

The root is stored at rank 1.

» Forthe node at rank i
O the left child is at rank 2i
4 the right child is at rank 2i + 1
O the parent is at rank floor(i/2)
Q if 2i + 1 > n, the node has no right child

4 if 2i > n, the node is a leaf

YORK EECS 2011]] .
.......... ' Prof. J. Elder 35 Last Updated: February 15, 2018

IIIIIIIIII

Bottom-up Heap Construction

» We can construct a heap
storing n keys using a
bottom-up construction with
log n phases

» |In phase i, pairs of heaps
with 2/ —1 keys are merged
into heaps with 2+1-1 keys

» Run time for construction is
O(n).

YORK ' EECS 2011 _36-

IIIIIIIIII
IIIIIIIIII

Prof. J. Elder

A A

Last Updated: February 15, 2018

Adaptable
Priority Queues

YO RK EECS 2011)) .
.......... ' Prof. J. Elder 37 Last Updated: February 15, 2018

IIIIIIIIII

Additional Methods of the Adaptable Priority Queue ADT

» remove(e): Remove from P and return entry e.

» replaceKey(e,k): Replace with k and return the old key,
an error condition occurs if k is invalid (that is, k cannot
be compared with other keys).

» replaceValue(e,x): Replace with x and return the old
value.

YORK EECS 2011]] .
.......... ' Prof. J. Elder 38 Last Updated: February 15, 2018

IIIIIIIIII

Location-Aware Entries

» A locator-aware entry identifies and tracks the
location of its (key, value) object within a data
structure

YORK EECS 2011]] .
.......... ' Prof. J. Elder 39 Last Updated: February 15, 2018

IIIIIIIIII

Heap Implementation

» A location-aware heap
entry is an object storing

O key
4 value

[position of the entry in the
underlying heap

» In turn, each heap position
stores an entry

» Back pointers are updated
during entry swaps

YORK ' EECS 2011

“““““““““ Prof. J. Elder

IIIIIIIIII

2|d
4|a 6|b
lg Sle 91c
-40 - Last Updated: February 15, 2018

Performance

» Times better than those achievable without location-aware

entries are highlighted in red:

Method

size, ISEmpty
insert

min
removeMin
remove
replaceKey

replaceValue

YORK ' EECS 2011

“““““““““ Prof. J. Elder

UUUUUUUUUU

Unsorted List

o(1)
o(1)
O(n)
O(n)
o)
o)
o)

-4 -

Sorted List
O(1)
O(n)
O(1)
O(1)
o)
O(n)
o)

Heap
o(1)
O(log n)
o(1)
O(log n)
O(log n)
O(log n)
o)

Last Updated: February 15, 2018

Topics on the Midterm

» Data Structures & Object-Oriented Design
» Run-Time Analysis

» Linear Data Structures

» The Java Collections Framework

» Recursion

> Trees

» Priority Queues & Heaps

YORK EECS 2011]] .
.......... ' Prof. J. Elder 42 Last Updated: February 15, 2018

UUUUUUUUUU

