Midterm Review

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- The Java Collections Framework
- Recursion
- Trees
- Priority Queues & Heaps

Data Structures So Far

Array List

(Extendable) Array

Node List

Singly or Doubly Linked List

Stack

- Array
- Singly Linked List

Queue

- Array
- Singly or Doubly Linked List

Priority Queue

- Unsorted doubly-linked list
- □ Sorted doubly-linked list
- □ Heap (array-based)

Adaptable Priority Queue

- Sorted doubly-linked list with locationaware entries
- Heap with location-aware entries

➤ Tree

- Linked Structure
- Binary Tree
 - Linked Structure
 - Array

Data Structures & Object-Oriented Design

- Run-Time Analysis
- Linear Data Structures
- The Java Collections Framework
- Recursion
- Trees
- Priority Queues & Heaps

Data Structures & Object-Oriented Design

- Definitions
- Principles of Object-Oriented Design
- Hierarchical Design in Java
- Abstract Data Types & Interfaces
- Casting
- Generics
- Pseudo-Code

- Data Structures & Object-Oriented Design
- > Run-Time Analysis
- Linear Data Structures
- The Java Collections Framework
- Recursion
- Trees
- Priority Queues & Heaps

Seven Important Functions

1E+30

1E+28

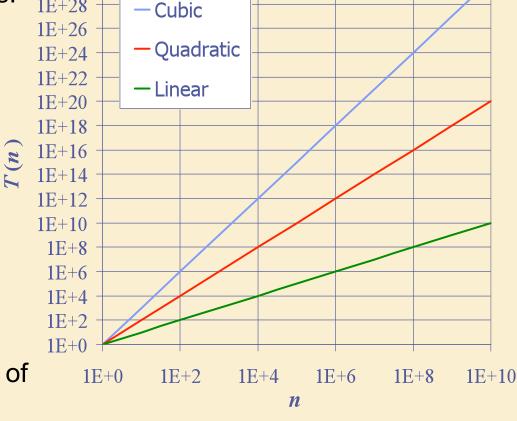
- 7 -

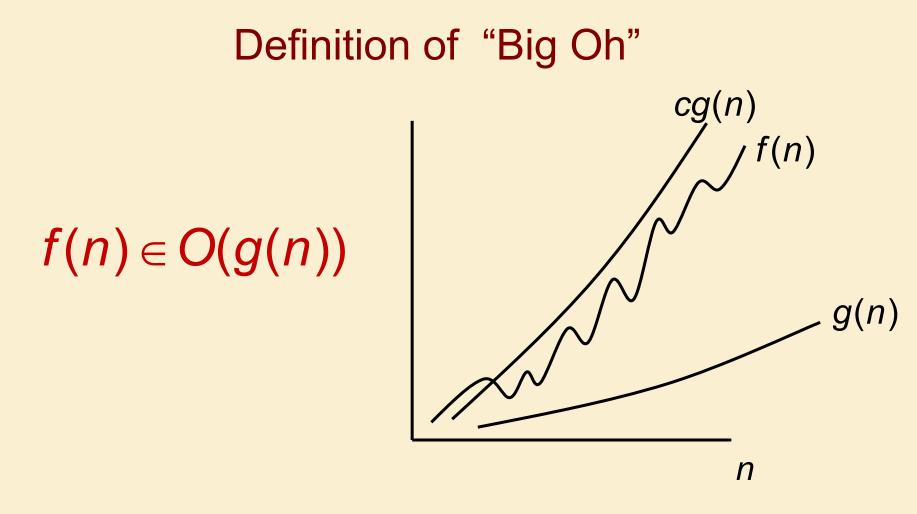
- Seven functions that often appear in algorithm analysis:
 - \Box Constant ≈ 1
 - \Box Logarithmic $\approx \log n$
 - \Box Linear $\approx n$
 - \square N-Log-N $\approx n \log n$
 - **Quadratic** $\approx n^2$
 - \Box Cubic $\approx n^3$
 - \Box Exponential $\approx 2^n$

EECS 2011

Prof. J. Elder

In a log-log chart, the slope of the line corresponds to the growth rate of the function.





$\exists c, n_0 > 0 : \forall n \ge n_0, f(n) \le cg(n)$

Relatives of Big-Oh

🔷 big-Omega

 f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n₀ ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n₀

• f(n) is $\Theta(g(n))$ if there are constants $c_1 > 0$ and $c_2 > 0$ and an integer constant $n_0 \ge 1$ such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for $n \ge n_0$

Time Complexity of an Algorithm

The time complexity of an algorithm is the *largest* time required on *any* input of size n. (Worst case analysis.)

- > O(n²): For any input size n ≥ n₀, the algorithm takes no more than cn² time on every input.
- > Ω(n²): For any input size n ≥ n₀, the algorithm takes at least cn² time on at least one input.

 \succ θ (n²): Do both.

Time Complexity of a Problem

The time complexity of a problem is the time complexity of the *fastest* algorithm that solves the problem.

- O(n²): Provide an algorithm that solves the problem in no more than this time.
 - □ Remember: for every input, i.e. worst case analysis!
- > $\Omega(n^2)$: Prove that no algorithm can solve it faster.
 - □ Remember: only need one input that takes at least this long!
- θ (n²): Do both.

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- The Java Collections Framework
- Recursion
- Trees
- Priority Queues & Heaps

Linear Data Structures

Fundamental Data Structures

- Arrays
- □ Singly-Linked Lists
- Doubly-Linked Lists
- Abstract Data Types
 - Array Lists
 - Stacks
 - Queues

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- The Java Collections Framework
- Recursion
- Trees
- Priority Queues & Heaps

Iterators

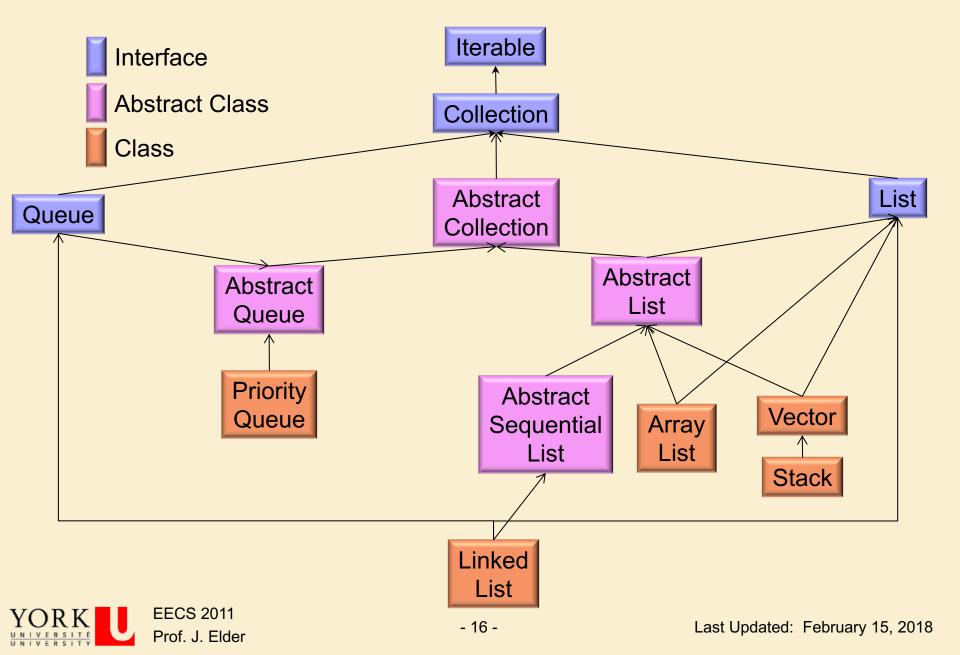
- An <u>Iterator</u> is an object that enables you to traverse through a collection and to remove elements from the collection selectively, if desired.
- You get an Iterator for a collection by calling its iterator method.
- Suppose collection is an instance of a Collection. Then to print out each element on a separate line:

```
Iterator<E> it = collection.iterator();
```

while (it.hasNext())

System.out.println(it.next());

The Java Collections Framework (Ordered Data Types)



- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- The Java Collections Framework

Recursion

- Trees
- Priority Queues & Heaps

Linear Recursion Design Pattern

> Test for base cases

- Begin by testing for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

Recurse once

- Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
- Define each possible recursive call so that it makes progress towards a base case.

Binary Recursion

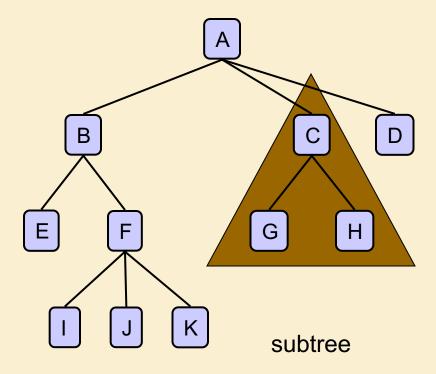
Binary recursion occurs whenever there are two recursive calls for each non-base case.

Example 1: The Fibonacci Sequence

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- The Java Collections Framework
- Recursion
- Trees
- Priority Queues & Heaps

Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Descendant of a node: child, grandchild, grand-grandchild, etc.
- Siblings: two nodes having the same parent
- Depth of a node: number of ancestors (excluding self)
- Height of a tree: maximum depth of any node (3)
- Subtree: tree consisting of a node and its descendants



Position ADT

- The Position ADT models the notion of place within a data structure where a single object is stored
- It gives a unified view of diverse ways of storing data, such as
 - □a cell of an array
 - □ a node of a linked list
 - a node of a tree
- Just one method:

Object element(): returns the element stored at the position

Tree ADT

- We use positions to abstract nodes
- Generic methods:
 - □ integer size()
 - boolean isEmpty()
 - Iterator iterator()
 - □ Iterable positions()
- Accessor methods:
 - □ position root()
 - position parent(p)
 - positionIterator children(p)

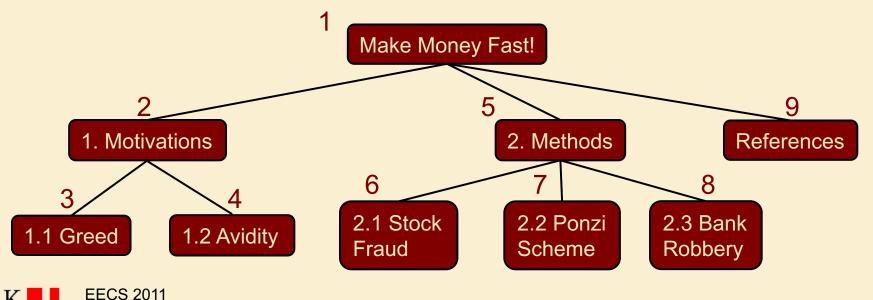
- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- Update method:
 - object replace(p, o)
 - Additional update methods may be defined by data structures implementing the Tree ADT

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants

Prof. J. Elder

Algorithm preOrder(v) visit(v) for each child w of v preOrder (w)

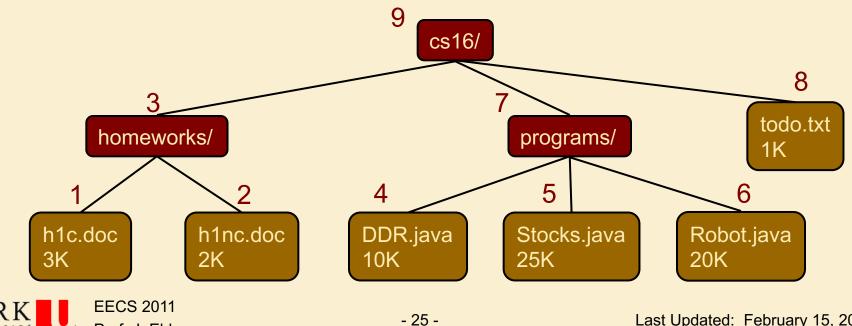


Postorder Traversal

In a postorder traversal, a node is visited after its descendants

Prof. J. Elder

Algorithm *postOrder(v)* for each child w of v postOrder (w) visit(v)



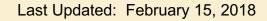
Properties of Proper Binary Trees

Notation

- n number of nodes
- e number of external nodes
- *i* number of internal nodes
- h height

Properties:

- 🖵 e = i + 1
- 🖵 n = 2e 1
- \Box h \leq i
- □ h ≤ (n 1)/2
 - **□** e ≤ 2^h
- \Box h \geq log₂e
- $\Box h \ge \log_2(n+1) 1$



- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- The Java Collections Framework
- Recursion
- Trees
- > Priority Queues & Heaps

Priority Queue ADT

- A priority queue stores a collection of entries
- Each entry is a pair (key, value)
- Main methods of the Priority Queue ADT

□ **insert**(k, x) inserts an entry with key k and value x

removeMin() removes and returns the entry with smallest key

Additional methods

min() returns, but does not remove, an entry with smallest key
 size(), isEmpty()

> Applications:

- Process scheduling
- Standby flyers

Comparator ADT

- A comparator encapsulates the action of comparing two objects according to a given total order relation
- > A generic priority queue uses an auxiliary comparator
- > The comparator is external to the keys being compared
- When the priority queue needs to compare two keys, it uses its comparator
- The primary method of the Comparator ADT:
 Compare(a, b):

 \diamond Returns an integer *i* such that

✤ i < 0 if a < b</p>

- ✤ i = 0 if a = b
- ✤ i > 0 if a > b

 \diamond an error occurs if *a* and *b* cannot be compared.

Heaps

Goal:

□ O(log n) insertion

O(log n) removal

Remember that O(log n) is almost as good as O(1)!
 □ e.g., n = 1,000,000,000 → log n ≅ 30

There are min heaps and max heaps. We will assume min heaps.

Min Heaps

- A min heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - □ Heap-order: for every internal node v other than the root

 $\diamondsuit key(v) \ge key(parent(v))$

□ (Almost) complete binary tree: let *h* be the height of the heap

♦ for i = 0, ..., h - 1, there are 2^i nodes of depth i

 \diamond at depth h - 1

the internal nodes are to the left of the external nodes

Only the rightmost internal node may have a single child

2

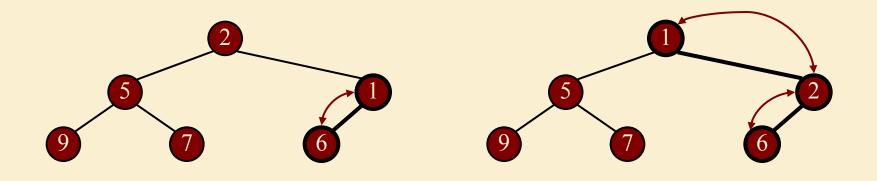
5

9

6

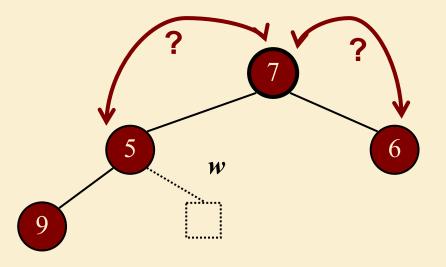
Upheap

- After the insertion of a new key k, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- > Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time



Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- Note that there are, in general, many possible downward paths which one do we choose?



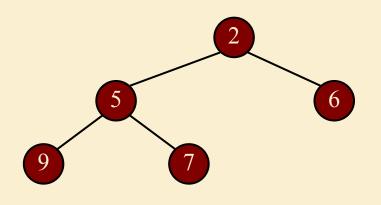
Downheap

> We select the downward path through the **minimum-key** nodes.

- Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- > Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

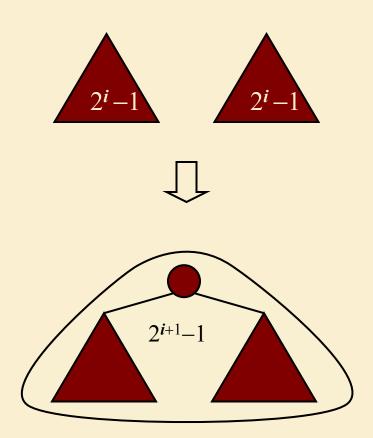
Array-based Heap Implementation

- We can represent a heap with n keys by means of an array of length n + 1
- Links between nodes are not explicitly stored
- The cell at rank 0 is not used
- The root is stored at rank 1.
- For the node at rank i
 - □ the left child is at rank 2*i*
 - \Box the right child is at rank 2i + 1
 - □ the parent is at rank floor(i/2)
 - □ if 2i + 1 > n, the node has no right child
 - □ if 2i > n, the node is a leaf

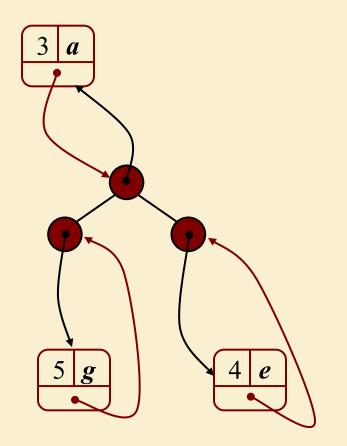


Bottom-up Heap Construction

- We can construct a heap storing *n* keys using a bottom-up construction with log *n* phases
- In phase *i*, pairs of heaps with 2ⁱ-1 keys are merged into heaps with 2ⁱ⁺¹-1 keys
- Run time for construction is O(n).



Adaptable Priority Queues



Additional Methods of the Adaptable Priority Queue ADT

- remove(e): Remove from P and return entry e.
- replaceKey(e,k): Replace with k and return the old key; an error condition occurs if k is invalid (that is, k cannot be compared with other keys).
- replaceValue(e,x): Replace with x and return the old value.

Location-Aware Entries

A locator-aware entry identifies and tracks the location of its (key, value) object within a data structure

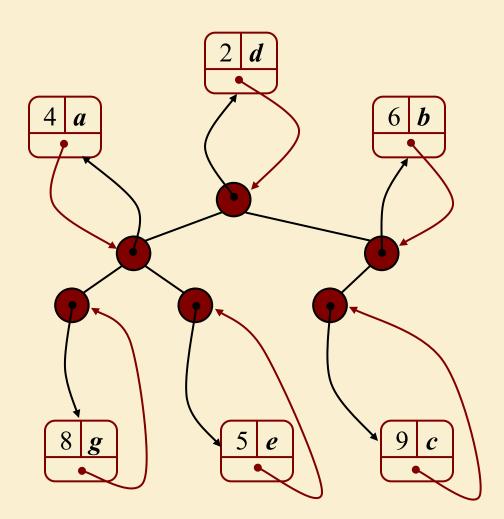
Heap Implementation

A location-aware heap entry is an object storing

🛛 key

value

- position of the entry in the underlying heap
- In turn, each heap position stores an entry
- Back pointers are updated during entry swaps



Performance

Times better than those achievable without location-aware entries are highlighted in red:

Method	Unsorted List	Sorted List	Неар
size, isEmpty	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
insert	<i>O</i> (1)	O(n)	$O(\log n)$
min	O(n)	<i>O</i> (1)	<i>O</i> (1)
removeMin	O(n)	<i>O</i> (1)	$O(\log n)$
remove	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (log <i>n</i>)
replaceKey	<i>O</i> (1)	O(n)	<i>O</i> (log <i>n</i>)
replaceValue	<i>0</i> (1)	<i>O</i> (1)	<i>O</i> (1)

- Data Structures & Object-Oriented Design
- Run-Time Analysis
- Linear Data Structures
- The Java Collections Framework
- Recursion
- Trees
- Priority Queues & Heaps

