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Topics on the Midterm

Ø Data Structures & Object-Oriented Design

Ø Run-Time Analysis

Ø Linear Data Structures

Ø The Java Collections Framework

Ø Recursion

Ø Trees

Ø Priority Queues & Heaps
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Data Structures So Far

Ø Array List
q (Extendable) Array

Ø Node List
q Singly or Doubly Linked List

Ø Stack
q Array

q Singly Linked List

Ø Queue
q Array

q Singly or Doubly Linked List

Ø Priority Queue
q Unsorted doubly-linked list

q Sorted doubly-linked list

q Heap (array-based)

Ø Adaptable Priority Queue
q Sorted doubly-linked list with location-

aware entries

q Heap with location-aware entries

Ø Tree
q Linked Structure

Ø Binary Tree
q Linked Structure

q Array
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Data Structures & Object-Oriented Design

Ø Definitions

Ø Principles of Object-Oriented Design

Ø Hierarchical Design in Java

Ø Abstract Data Types & Interfaces

Ø Casting

Ø Generics

Ø Pseudo-Code
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Seven Important Functions
Ø Seven functions that often 

appear in algorithm analysis:

q Constant ≈ 1

q Logarithmic ≈ log n

q Linear ≈ n

q N-Log-N ≈ n log n

q Quadratic ≈ n2

q Cubic ≈ n3

q Exponential ≈ 2n

Ø In a log-log chart, the slope of 
the line corresponds to the 
growth rate of the function.
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Definition of  “Big Oh”
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Relatives of Big-Oh
big-Omega
n f(n) is Ω(g(n)) if there is a constant c > 0 

and an integer constant n0 ≥ 1 such that 

f(n) ≥ c•g(n) for n ≥ n0

big-Theta
n f(n) is Θ(g(n)) if there are constants c1 > 0 

and c2 > 0 and an integer constant n0 ≥ 1 
such that c1•g(n) ≤ f(n) ≤ c2•g(n) for n ≥ n0
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Time Complexity of an Algorithm

Ø O(n2): For any input size n ≥ n0, the algorithm takes 
no more than cn2 time on every input.

Ø Ω(n2): For any input size n ≥ n0, the algorithm takes at 
least cn2 time on at least one input.

Ø θ (n2): Do both.

The time complexity of an algorithm is
the largest time required on any input 
of size n. (Worst case analysis.)
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Time Complexity of a Problem

Ø O(n2): Provide an algorithm that solves the problem in no more than 
this time. 

q Remember: for every input, i.e. worst case analysis!

Ø Ω(n2): Prove that no algorithm can solve it faster.

q Remember:  only need one input that takes at least this long!

Ø θ (n2): Do both.

The time complexity of a problem is 
the time complexity of the fastest
algorithm that solves the problem.
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Linear Data Structures

Ø Fundamental Data Structures
q Arrays

q Singly-Linked Lists

q Doubly-Linked Lists

Ø Abstract Data Types
q Array Lists

q Stacks

q Queues
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Iterators

Ø An Iterator is an object that enables you to traverse 
through a collection and to remove elements from the 
collection selectively, if desired. 

Ø You get an Iterator for a collection by calling its iterator
method.

Ø Suppose collection is an instance of a Collection.  
Then to print out each element on a separate line: 

Iterator<E> it = collection.iterator();

while (it.hasNext())

System.out.println(it.next());

http://java.sun.com/javase/7/docs/api/java/util/Iterator.html
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Iterable

Collection

Abstract
CollectionQueue List

Abstract
Queue

Priority
Queue Array

List

Abstract
List

Vector

Stack

Linked
List

Abstract
Sequential

List

Interface

Abstract Class

Class

The Java Collections Framework (Ordered Data Types) 
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Linear Recursion Design Pattern
Ø Test for base cases

q Begin by testing for a set of base cases (there should be at least 
one). 

q Every possible chain of recursive calls must eventually reach a 
base case, and the handling of each base case should not use 
recursion.

Ø Recurse once
q Perform a single recursive call. (This recursive step may involve 

a test that decides which of several possible recursive calls to 
make, but it should ultimately choose to make just one of these 
calls each time we perform this step.)

q Define each possible recursive call so that it makes progress 
towards a base case.
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Binary Recursion

ØBinary recursion occurs whenever there are 
two recursive calls for each non-base case.

ØExample 1: The Fibonacci Sequence
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subtree

Tree Terminology
Ø Root: node without parent (A)
Ø Internal node: node with at least one child 

(A, B, C, F)
Ø External node (a.k.a. leaf ): node without 

children (E, I, J, K, G, H, D)
Ø Ancestors of a node: parent, 

grandparent, grand-grandparent, etc.
Ø Descendant of a node: child, grandchild, 

grand-grandchild, etc.
Ø Siblings:  two nodes having the same 

parent
Ø Depth of a node: number of ancestors 

(excluding self)
Ø Height of a tree: maximum depth of any 

node (3)
Ø Subtree: tree consisting of a node and its 

descendants

A

B DC

G HE F

I J K
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Position ADT

ØThe Position ADT models the notion of place 
within a data structure where a single object is 
stored

Ø It gives a unified view of diverse ways of storing 
data, such as
qa cell of an array

qa node of a linked list

qa node of a tree

Ø Just one method:
qobject element(): returns the element stored at the 

position
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Tree ADT

Ø We use positions to abstract nodes

Ø Generic methods:
q integer size()

q boolean isEmpty()

q Iterator iterator()

q Iterable positions()

Ø Accessor methods:
q position root()

q position parent(p)

q positionIterator children(p)

Ø Query methods:
q boolean isInternal(p)

q boolean isExternal(p)

q boolean isRoot(p)

Ø Update method:
q object replace(p, o)

q Additional update methods may 
be defined by data structures 
implementing the Tree ADT
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Preorder Traversal

Ø A traversal visits the nodes of a 
tree in a systematic manner

Ø In a preorder traversal, a node is 
visited before its descendants

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preOrder (w)
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Postorder Traversal

Ø In a postorder traversal, a 
node is visited after its 
descendants

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8
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Properties of Proper Binary Trees
Ø Notation

n number of nodes

e number of external nodes

i number of internal nodes

h height

Ø Properties:
q e = i + 1

q n = 2e - 1

q h ≤  i

q h ≤  (n - 1)/2

q e ≤ 2h

q h ≥  log2e

q h ≥  log2(n + 1) - 1
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Priority Queue ADT

Ø A priority queue stores a collection of entries
Ø Each entry is a pair (key, value)

Ø Main methods of the Priority Queue ADT
q insert(k, x) inserts an entry with key k and value x

q removeMin() removes and returns the entry with smallest key

Ø Additional methods
q min() returns, but does not remove, an entry with smallest key

q size(), isEmpty()

Ø Applications:
q Process scheduling

q Standby flyers
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Comparator ADT
Ø A comparator encapsulates the action of comparing two 

objects according to a given total order relation
Ø A generic priority queue uses an auxiliary comparator
Ø The comparator is external to the keys being compared
Ø When the priority queue needs to compare two keys, it 

uses its comparator
Ø The primary method of the Comparator ADT:

q compare(a, b): 
²Returns an integer i such that 

v i < 0 if a < b

v i = 0 if a = b
v i > 0 if a > b

v an error occurs if a and b cannot be compared.
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Heaps

Ø Goal:
q O(log n) insertion

q O(log n) removal

Ø Remember that O(log n) is almost as good as O(1)!
q e.g., n = 1,000,000,000 à log n � 30

Ø There are min heaps and max heaps.  We will assume 
min heaps.
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Min Heaps 
Ø A min heap is a binary tree storing keys at its nodes and 

satisfying the following properties:

q Heap-order: for every internal node v other than the root

² key(v) ≥ key(parent(v))

q (Almost) complete binary tree: let h be the height of the heap

² for i = 0, … , h - 1, there are 2i nodes of depth i

²at depth h – 1
v the internal nodes are to the left of the external nodes

v Only the rightmost internal node may have a single child 2

65

79

q The last node of a heap is the 
rightmost node of depth h
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Upheap

Ø After the insertion of a new key k, the heap-order property may be 
violated

Ø Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node

Ø Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k

Ø Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6

1

25

79 6
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Downheap

Ø After replacing the root key with the key k of the last node, the 
heap-order property may be violated

Ø Algorithm downheap restores the heap-order property by 
swapping key k along a downward path from the root

Ø Note that there are, in general, many possible downward paths –
which one do we choose?

7

65

9

w

? ?
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Downheap

Ø We select the downward path through the minimum-key nodes.

Ø Downheap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k

Ø Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9
w

5

67

9
w
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Array-based Heap Implementation
Ø We can represent a heap with n keys 

by means of an array of length n + 1

Ø Links between nodes are not explicitly 
stored

Ø The cell at rank 0 is not used

Ø The root is stored at rank 1.

Ø For the node at rank i
q the left child is at rank 2i

q the right child is at rank 2i + 1
q the parent is at rank floor(i/2)

q if 2i + 1 > n, the node has no right child

q if 2i > n, the node is a leaf

2

65

79

2 5 6 9 7

1 2 3 4 50
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Ø We can construct a heap 
storing n keys using a 
bottom-up construction with 
log n phases

Ø In phase i, pairs of heaps 
with 2i -1 keys are merged 
into heaps with 2i+1-1 keys

Ø Run time for construction is 
O(n).

Bottom-up Heap Construction

2i -1 2i -1

2i+1-1
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Adaptable 
Priority Queues

3 a

5 g 4 e
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Additional Methods of the Adaptable Priority Queue ADT

Ø remove(e): Remove from P and return entry e.

Ø replaceKey(e,k): Replace with k and return the old key;
an error condition occurs if k is invalid (that is, k cannot 
be compared with other keys).

Ø replaceValue(e,x): Replace with x and return the old 
value.
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Location-Aware Entries

Ø A locator-aware entry identifies and tracks the 
location of its (key, value) object within a data 
structure
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Heap Implementation

Ø A location-aware heap 
entry is an object storing

q key

q value

q position of the entry in the 
underlying heap

Ø In turn, each heap position 
stores an entry

Ø Back pointers are updated 
during entry swaps

4 a

2 d

6 b

8 g 5 e 9 c
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Performance

Ø Times better than those achievable without location-aware 
entries are highlighted in red:

Method Unsorted List Sorted List Heap

size, isEmpty O(1) O(1) O(1)

insert O(1) O(n) O(log n)

min O(n) O(1) O(1)

removeMin O(n) O(1) O(log n)

remove O(1) O(1) O(log n)

replaceKey O(1) O(n) O(log n)

replaceValue O(1) O(1) O(1)
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