
Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 1 -

Midterm Review

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 2 -

Topics on the Midterm

Ø Data Structures & Object-Oriented Design

Ø Run-Time Analysis

Ø Linear Data Structures

Ø The Java Collections Framework

Ø Recursion

Ø Trees

Ø Priority Queues & Heaps

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 3 -

Data Structures So Far

Ø Array List
q (Extendable) Array

Ø Node List
q Singly or Doubly Linked List

Ø Stack
q Array

q Singly Linked List

Ø Queue
q Array

q Singly or Doubly Linked List

Ø Priority Queue
q Unsorted doubly-linked list

q Sorted doubly-linked list

q Heap (array-based)

Ø Adaptable Priority Queue
q Sorted doubly-linked list with location-

aware entries

q Heap with location-aware entries

Ø Tree
q Linked Structure

Ø Binary Tree
q Linked Structure

q Array

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 4 -

Topics on the Midterm

Ø Data Structures & Object-Oriented Design

Ø Run-Time Analysis

Ø Linear Data Structures

Ø The Java Collections Framework

Ø Recursion

Ø Trees

Ø Priority Queues & Heaps

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 5 -

Data Structures & Object-Oriented Design

Ø Definitions

Ø Principles of Object-Oriented Design

Ø Hierarchical Design in Java

Ø Abstract Data Types & Interfaces

Ø Casting

Ø Generics

Ø Pseudo-Code

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 6 -

Topics on the Midterm

Ø Data Structures & Object-Oriented Design

Ø Run-Time Analysis

Ø Linear Data Structures

Ø The Java Collections Framework

Ø Recursion

Ø Trees

Ø Priority Queues & Heaps

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder

- 7 -

Seven Important Functions
Ø Seven functions that often

appear in algorithm analysis:

q Constant ≈ 1

q Logarithmic ≈ log n

q Linear ≈ n

q N-Log-N ≈ n log n

q Quadratic ≈ n2

q Cubic ≈ n3

q Exponential ≈ 2n

Ø In a log-log chart, the slope of
the line corresponds to the
growth rate of the function.

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 8 -

Definition of “Big Oh”

, 0 00 : , () ()c n n n f n cg n$ > " ³ £

()f n

()g n

()cg n

n

Î() (())f n O g n

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder

- 9 -

Relatives of Big-Oh
big-Omega
n f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that

f(n) ≥ c•g(n) for n ≥ n0

big-Theta
n f(n) is Θ(g(n)) if there are constants c1 > 0

and c2 > 0 and an integer constant n0 ≥ 1
such that c1•g(n) ≤ f(n) ≤ c2•g(n) for n ≥ n0

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 10 -

Time Complexity of an Algorithm

Ø O(n2): For any input size n ≥ n0, the algorithm takes
no more than cn2 time on every input.

Ø Ω(n2): For any input size n ≥ n0, the algorithm takes at
least cn2 time on at least one input.

Ø θ (n2): Do both.

The time complexity of an algorithm is
the largest time required on any input
of size n. (Worst case analysis.)

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 11 -

Time Complexity of a Problem

Ø O(n2): Provide an algorithm that solves the problem in no more than
this time.

q Remember: for every input, i.e. worst case analysis!

Ø Ω(n2): Prove that no algorithm can solve it faster.

q Remember: only need one input that takes at least this long!

Ø θ (n2): Do both.

The time complexity of a problem is
the time complexity of the fastest
algorithm that solves the problem.

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 12 -

Topics on the Midterm

Ø Data Structures & Object-Oriented Design

Ø Run-Time Analysis

Ø Linear Data Structures

Ø The Java Collections Framework

Ø Recursion

Ø Trees

Ø Priority Queues & Heaps

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 13 -

Linear Data Structures

Ø Fundamental Data Structures
q Arrays

q Singly-Linked Lists

q Doubly-Linked Lists

Ø Abstract Data Types
q Array Lists

q Stacks

q Queues

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 14 -

Topics on the Midterm

Ø Data Structures & Object-Oriented Design

Ø Run-Time Analysis

Ø Linear Data Structures

Ø The Java Collections Framework

Ø Recursion

Ø Trees

Ø Priority Queues & Heaps

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 15 -

Iterators

Ø An Iterator is an object that enables you to traverse
through a collection and to remove elements from the
collection selectively, if desired.

Ø You get an Iterator for a collection by calling its iterator
method.

Ø Suppose collection is an instance of a Collection.
Then to print out each element on a separate line:

Iterator<E> it = collection.iterator();

while (it.hasNext())

System.out.println(it.next());

http://java.sun.com/javase/7/docs/api/java/util/Iterator.html

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 16 -

Iterable

Collection

Abstract
CollectionQueue List

Abstract
Queue

Priority
Queue Array

List

Abstract
List

Vector

Stack

Linked
List

Abstract
Sequential

List

Interface

Abstract Class

Class

The Java Collections Framework (Ordered Data Types)

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 17 -

Topics on the Midterm

Ø Data Structures & Object-Oriented Design

Ø Run-Time Analysis

Ø Linear Data Structures

Ø The Java Collections Framework

Ø Recursion

Ø Trees

Ø Priority Queues & Heaps

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 18 -

Linear Recursion Design Pattern
Ø Test for base cases

q Begin by testing for a set of base cases (there should be at least
one).

q Every possible chain of recursive calls must eventually reach a
base case, and the handling of each base case should not use
recursion.

Ø Recurse once
q Perform a single recursive call. (This recursive step may involve

a test that decides which of several possible recursive calls to
make, but it should ultimately choose to make just one of these
calls each time we perform this step.)

q Define each possible recursive call so that it makes progress
towards a base case.

Last Updated: February 15, 2018
EECS 2011

Prof. J. Elder
- 19 -

Binary Recursion

ØBinary recursion occurs whenever there are
two recursive calls for each non-base case.

ØExample 1: The Fibonacci Sequence

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 20 -

Topics on the Midterm

Ø Data Structures & Object-Oriented Design

Ø Run-Time Analysis

Ø Linear Data Structures

Ø The Java Collections Framework

Ø Recursion

Ø Trees

Ø Priority Queues & Heaps

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 21 -

subtree

Tree Terminology
Ø Root: node without parent (A)
Ø Internal node: node with at least one child

(A, B, C, F)
Ø External node (a.k.a. leaf): node without

children (E, I, J, K, G, H, D)
Ø Ancestors of a node: parent,

grandparent, grand-grandparent, etc.
Ø Descendant of a node: child, grandchild,

grand-grandchild, etc.
Ø Siblings: two nodes having the same

parent
Ø Depth of a node: number of ancestors

(excluding self)
Ø Height of a tree: maximum depth of any

node (3)
Ø Subtree: tree consisting of a node and its

descendants

A

B DC

G HE F

I J K

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 22 -

Position ADT

ØThe Position ADT models the notion of place
within a data structure where a single object is
stored

Ø It gives a unified view of diverse ways of storing
data, such as
qa cell of an array

qa node of a linked list

qa node of a tree

Ø Just one method:
qobject element(): returns the element stored at the

position

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 23 -

Tree ADT

Ø We use positions to abstract nodes

Ø Generic methods:
q integer size()

q boolean isEmpty()

q Iterator iterator()

q Iterable positions()

Ø Accessor methods:
q position root()

q position parent(p)

q positionIterator children(p)

Ø Query methods:
q boolean isInternal(p)

q boolean isExternal(p)

q boolean isRoot(p)

Ø Update method:
q object replace(p, o)

q Additional update methods may
be defined by data structures
implementing the Tree ADT

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 24 -

Preorder Traversal

Ø A traversal visits the nodes of a
tree in a systematic manner

Ø In a preorder traversal, a node is
visited before its descendants

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preOrder (w)

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 25 -

Postorder Traversal

Ø In a postorder traversal, a
node is visited after its
descendants

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 26 -

Properties of Proper Binary Trees
Ø Notation

n number of nodes

e number of external nodes

i number of internal nodes

h height

Ø Properties:
q e = i + 1

q n = 2e - 1

q h ≤ i

q h ≤ (n - 1)/2

q e ≤ 2h

q h ≥ log2e

q h ≥ log2(n + 1) - 1

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 27 -

Topics on the Midterm

Ø Data Structures & Object-Oriented Design

Ø Run-Time Analysis

Ø Linear Data Structures

Ø The Java Collections Framework

Ø Recursion

Ø Trees

Ø Priority Queues & Heaps

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 28 -

Priority Queue ADT

Ø A priority queue stores a collection of entries
Ø Each entry is a pair (key, value)

Ø Main methods of the Priority Queue ADT
q insert(k, x) inserts an entry with key k and value x

q removeMin() removes and returns the entry with smallest key

Ø Additional methods
q min() returns, but does not remove, an entry with smallest key

q size(), isEmpty()

Ø Applications:
q Process scheduling

q Standby flyers

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 29 -

Comparator ADT
Ø A comparator encapsulates the action of comparing two

objects according to a given total order relation
Ø A generic priority queue uses an auxiliary comparator
Ø The comparator is external to the keys being compared
Ø When the priority queue needs to compare two keys, it

uses its comparator
Ø The primary method of the Comparator ADT:

q compare(a, b):
²Returns an integer i such that

v i < 0 if a < b

v i = 0 if a = b
v i > 0 if a > b

v an error occurs if a and b cannot be compared.

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 30 -

Heaps

Ø Goal:
q O(log n) insertion

q O(log n) removal

Ø Remember that O(log n) is almost as good as O(1)!
q e.g., n = 1,000,000,000 à log n � 30

Ø There are min heaps and max heaps. We will assume
min heaps.

Last Updated: February 15, 2018
EECS 2011

Prof. J. Elder
- 31 -

Min Heaps
Ø A min heap is a binary tree storing keys at its nodes and

satisfying the following properties:

q Heap-order: for every internal node v other than the root

² key(v) ≥ key(parent(v))

q (Almost) complete binary tree: let h be the height of the heap

² for i = 0, … , h - 1, there are 2i nodes of depth i

²at depth h – 1
v the internal nodes are to the left of the external nodes

v Only the rightmost internal node may have a single child 2

65

79

q The last node of a heap is the
rightmost node of depth h

Last Updated: February 15, 2018
EECS 2011

Prof. J. Elder
- 32 -

Upheap

Ø After the insertion of a new key k, the heap-order property may be
violated

Ø Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node

Ø Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k

Ø Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6

1

25

79 6

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder

- 33 -

Downheap

Ø After replacing the root key with the key k of the last node, the
heap-order property may be violated

Ø Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

Ø Note that there are, in general, many possible downward paths –
which one do we choose?

7

65

9

w

? ?

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder

- 34 -

Downheap

Ø We select the downward path through the minimum-key nodes.

Ø Downheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k

Ø Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9
w

5

67

9
w

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 35 -

Array-based Heap Implementation
Ø We can represent a heap with n keys

by means of an array of length n + 1

Ø Links between nodes are not explicitly
stored

Ø The cell at rank 0 is not used

Ø The root is stored at rank 1.

Ø For the node at rank i
q the left child is at rank 2i

q the right child is at rank 2i + 1
q the parent is at rank floor(i/2)

q if 2i + 1 > n, the node has no right child

q if 2i > n, the node is a leaf

2

65

79

2 5 6 9 7

1 2 3 4 50

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 36 -

Ø We can construct a heap
storing n keys using a
bottom-up construction with
log n phases

Ø In phase i, pairs of heaps
with 2i -1 keys are merged
into heaps with 2i+1-1 keys

Ø Run time for construction is
O(n).

Bottom-up Heap Construction

2i -1 2i -1

2i+1-1

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 37 -

Adaptable
Priority Queues

3 a

5 g 4 e

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 38 -

Additional Methods of the Adaptable Priority Queue ADT

Ø remove(e): Remove from P and return entry e.

Ø replaceKey(e,k): Replace with k and return the old key;
an error condition occurs if k is invalid (that is, k cannot
be compared with other keys).

Ø replaceValue(e,x): Replace with x and return the old
value.

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 39 -

Location-Aware Entries

Ø A locator-aware entry identifies and tracks the
location of its (key, value) object within a data
structure

Last Updated: February 15, 2018
EECS 2011

Prof. J. Elder
- 40 -

Heap Implementation

Ø A location-aware heap
entry is an object storing

q key

q value

q position of the entry in the
underlying heap

Ø In turn, each heap position
stores an entry

Ø Back pointers are updated
during entry swaps

4 a

2 d

6 b

8 g 5 e 9 c

Last Updated: February 15, 2018
EECS 2011

Prof. J. Elder
- 41 -

Performance

Ø Times better than those achievable without location-aware
entries are highlighted in red:

Method Unsorted List Sorted List Heap

size, isEmpty O(1) O(1) O(1)

insert O(1) O(n) O(log n)

min O(n) O(1) O(1)

removeMin O(n) O(1) O(log n)

remove O(1) O(1) O(log n)

replaceKey O(1) O(n) O(log n)

replaceValue O(1) O(1) O(1)

Last Updated: February 15, 2018
EECS 2011
Prof. J. Elder - 42 -

Topics on the Midterm

Ø Data Structures & Object-Oriented Design

Ø Run-Time Analysis

Ø Linear Data Structures

Ø The Java Collections Framework

Ø Recursion

Ø Trees

Ø Priority Queues & Heaps

